Investigating the Profile of miRNAs in the Mammalian Male Reproductive Tract

Jackson Nicholas Reilly, B. Biotech (Hons, CI) (University of Newcastle)

c3145027

M. Philosophy (Biological Sciences)

School of Environmental and Life Sciences

University of Newcastle

2017

Index

Indexi
Index
Figure Listiv
Acknowledgementsviii
Abstractix
Declarationxi
Abbreviationsxvi
Chapter 1: Literature Review and Project Rationale1
1.1 Introduction
1.2 MicroRNA production in animal cells2
1.3 MicroRNA production – the nucleus
1.4 Cytoplasmic Processing of pre-miRNAs5
1.5 Production of male gametes7
1.6 Post-testicular epididymal sperm maturation
1.7 Role of miRNAs in regulating epididymal function14
1.8 Role of epididymosomes in epididymal intercellular communication
1.9 Conclusion
1.10 Project Aims and Rationale
Chapter 2: Materials and Methods
2.1 General
2.2 Chemicals and solutions

2.3 Ethics statement
2.4 Dissection of euthanized Swiss mice
2.5 Isolation of epididymal epithelial cells
2.6 Isolation of epididymal spermatozoa25
2.7 Isolation of epididymosomes
2.8 Epididymosome bead binding26
2.9 Co-incubation of epididymosomes with sperm27
2.10 RNA extraction
2.11 DNase treatment of RNA samples
2.12 Reverse transcription and PCR for RNA quality control
2.13 Next Generation Sequencing
2.14 Taqman reverse transcription and real time PCR confirmation of selected
miRNAs
2.15 In silico analysis of previously identified miRNAs and target prediction
2.16 <i>In silico</i> identification of putative novel miRNAs
2.17 Statistical analysis
Chapter 3: Profiling the complement of miRNAs present throughout the mammalian
epididymis
3.1 Introduction
3.2 Next Generation Sequencing Analysis Reveals Segmental Patterns of microRNA
Expression in Mouse Epididymal Epithelial Cells

3.3 The MicroRNA Signature of Mouse Spermatozoa Is Substantially Modified
During Epididymal Maturation
3.4 Characterisation of Mouse Epididymosomes Reveals a Complex Profile Of
microRNAs and a Potential Mechanism for Modification of the Sperm Epigenome.39
Chapter 4: Identification and characterisation of novel miRNAs in the mouse
epididymis42
4.1 Introduction
4.2 Identification of Novel miRNAs45
4.2 Potential Targets of Novel miRNAs51
4.3 Validation of Novel miRNAs61
Chapter 5: Discussion
5.1 Introduction
5.2 Epididymal miRNA Discussion64
5.3 Novel miRNA Discussion78
Chapter 6: Future Directions and Final Conclusions
6.1 Introduction
6.2 Future Work
6.3 Final conclusions
References
Appendices

Figure List

Number	Title	<u>Pg #</u>
F1.1	The miRNA production pathways of animal cells.	3
T1.1	miRNA molecules involved in regulating the generation of male germ cells.	10
F1.2	Model for miRNA control of epididymal function and sperm maturation.	21
T2.1	Identification codes of miRNA Taqman Assays.	32
F3.1	Experimental plan for sequencing miRNA profiles of the mammalian epididymis.	36
F4.1	Bioinformatic workflow for identifying novel miRNAs.	46
F4.2	Predicted secondary structure of putative novel precursor stem-loops for the five investigated miRNAs.	48
T4.1	Summary of putative novel miRNAs selected for further analysis.	50
T4.2	Abundance of putative novel miRNAs selected for further analyses.	50
F4.3	Flowchart illustrating target identification of novel miRNAs.	52
T4.3	Summary of novel miRNA targets identified with the highest level of confidence across several analysis tools.	54
F4.4	Duplexes formed at potential sites of interaction between Nov-miR13 and putative target genes.	55
F4.5	Duplexes formed at potential target sites of between Nov-miR37 and putative target genes.	56
F4.6	Duplexes formed at potential sites of interaction between Nov-miR42 and putative target genes.	57
F4.7	Duplexes formed at potential sites of interaction between Nov-miR101 and putative target genes.	58
F4.8	Duplexes formed at potential sites of interaction between Nov-miR127 and putative target genes.	59
F4.9	Significant biological pathways potentially regulated by identified Nov-miRs.	60
F4.10	TaqMan RT-qPCR validation of novel miRNAs in epididymal spermatozoa.	62
F4.11	TaqMan RT-qPCR validation of novel miRNAs in epididymal epithelial cells.	63
A1	Biggers, Whitten and Whittingham media (BWW) Composition.	136
A2	Sequential centrifugation steps employed to cleanse epididymosome samples of sperm.	137
A3	Composition of Discontinuous Optiprep density gradient used to isolate epididymosomes.	137

A4	Composition of 'Solution D' reagent used in RNA extractions	137
A5	Composition of reverse transcription master mix	138
A6	Composition of SYBR green qPCR master mix	138
A7	qPCR protocol for housekeeping genes	138
A8	Composition of Taqman reverse transcription master mix	139
A9	Thermocycler protocol used for Taqman reverse transcription	139
A10	Composition of Taqman RT-qPCR reactions	139
A11	Thermocycler protocol used for Taqman RT-qPCR	140
A12	Details of each miR-seq file generated in prior NGS analyses.	140
A13	Details of all potentially novel miRNAs.	141
A14	Raw abundance of all potentially novel miRNAs in spermatozoa.	142
A15	Raw abundance of all potentially novel miRNAs in epithelial cells.	143
A16	Raw abundance of all potentially novel miRNAs in epididymosomes.	144
A17	Normalised abundance of all potentially novel miRNAs in spermatozoa.	145
A18	Normalised abundance of all potentially novel miRNAs in epithelial cells.	146
A19	Normalised abundance of all potentially novel miRNAs in epididymosomes.	147
A20	Secondary hairpin structure of Nov-miRs 13 – 52	148
A21	Secondary hairpin structure of Nov-miRs 61 – 125	149
A22	Secondary hairpin structure of Nov-miRs 127 – 311	150
A23	Putative Targets of Nov-miRs as Identified by Several Analysis Tools	151
A24	Ranking of Putative Targets of Nov-miRs as Identified by Several Analysis Tools	157
	Amplification cycles of the U6 sRNA internal control in cDNA and reverse transcription control samples generated from biological pools	
A25	of epididymal spermatozoa.	163
120	Amplification curves of the U6 sRNA internal control in cDNA and reverse transcription control samples generated from biological pools	104
A26	of epididymal spermatozoa.	164

A27	Amplification cycles of miR-29a* in cDNA and reverse transcription control samples generated from biological pools of epididymal	
AZ7	spermatozoa.	164
120	Amplification curves of miR-29a* in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A28	spermatozoa.	165
A29	Amplification cycles of Nov-miR13 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
	spermatozoa.	165
	Amplification curves of Nov-miR13 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A30	spermatozoa.	166
	Amplification cycles of Nov-miR37 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A31	spermatozoa.	166
^ 2 2	Amplification curves of Nov-miR37 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A32	spermatozoa.	167
A33	Amplification cycles of Nov-miR42 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
	spermatozoa.	167
A34	Amplification cycles of Nov-miR42 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A34	spermatozoa.	168
A35	Amplification cycles of Nov-miR101 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A55	spermatozoa.	168
A36	Amplification curves of Nov-miR101 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A30	spermatozoa.	169
A 2 7	Amplification cycles of Nov-miR127 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A37	spermatozoa.	169
A38	Amplification curves of Nov-miR127 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
ASO	spermatozoa.	170
A20	Amplification cycles of the U6 sRNA internal control in cDNA and reverse transcription control samples generated from biological pools	
A39	of epididymal epithelial cells.	170

A40 of A41 ep A42 An ep A43 ep	Amplification curves of the U6 sRNA internal control in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells. Amplification cycles of <i>miR-29a</i> * in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells. Amplification curves of <i>miR-29a</i> * in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells. Amplification curves of <i>miR-29a</i> * in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells. Amplification cycles of <i>Nov-miR</i> 13 in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells.	171 171 172 172
A41 ep A42 An ep A43 ep A43 An	epithelial cells. Amplification curves of <i>miR-29a</i> * in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells. Amplification cycles of <i>Nov-miR</i> 13 in cDNA and reverse transcription control samples generated from biological pools of epididymal	172
A42 ep A43 ep An A43 An	epithelial cells. Amplification cycles of <i>Nov-miR</i> 13 in cDNA and reverse transcription control samples generated from biological pools of epididymal	
A43 ep		172
An An		
ep (Amplification curves of Nov-miR13 in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells.	173
445	Amplification cycles of <i>Nov-miR</i> 37 in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells.	173
A46	Amplification curves of <i>Nov-miR</i> 37 in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells.	174
	Amplification cycles of <i>Nov-miR</i> 42 in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells.	174
A48	Amplification curves of <i>Nov-miR</i> 42 in cDNA and reverse transcription control samples generated from biological pools of epididymal epithelial cells.	175
A49 Ta	aqMan RT-qPCR validation of novel miRNAs in epididymal spermatozoa across each biological pool.	176
A50 Ta	FaqMan RT-qPCR validation of novel miRNAs in epididymal epithelial cells across each biological pool.	177

F: Figure, T: Table, and A: Appendix

Acknowledgements

First and foremost I wish to thank my family – Mum, Dad and Tamara – without whom completion would not have been possible. To all three of you: I thank you for your continued support and encouragement throughout my time at the University of Newcastle, for keeping on top of me when requested, and providing me with a loving environment in which I have been able to complete my studies. I would also like to extend my thanks to my grandparents – Nanna and Papa – whose constant concern and positive attitudes helped me hold my chin high and push on when times were tough. I am eternally grateful for all of the love and support the five of you have given me over my 25 years – I love you all dearly.

I would also like to take the time to thank each of my friends – Aaron, Ethan, Georgia, Pete, Riley, Scott, and Tyler – that supported me throughout my post-graduate endeavour. I could always rely on each of you to lend an ear, give me impartial and valuable advice, as well as a format in which I could destress when I was well and truly run down. Whether our time was spent in the gym, jamming out on instruments, playing videogames, hitting the beach, learning to paint, or just sitting down and enjoying a nice cup of coffee and a chat, every single one of you have been there for me and for that I will always be there for you. You are the best friends anyone could ask for.

Finally, I would like to thank my supervisors – Brett and Andy – for giving me the opportunity to undertake post-graduate studies at the University of Newcastle. Working with the two of you has been an eye-opening experience that has truly broadened my horizons. Thanks to you taking me on, I have had some incredibly unique experiences, met some very interesting people, progressed further academically, and made significant strides forward as an individual. The advice, critique and direction you gave me during my time as your student helped me to develop my knowledge, improve my analytical skills, further understand the research community, and generate this thesis – the culmination of my efforts as a university student. Thank you.

Abstract

Approximately 20 % of the human population is affected by infertility, leading to an increasing concern regarding the reproductive health of our species. In around half these cases, a male factor is implicated and as a result, many research groups are actively exploring the causes of male infertility and the development of therapeutic interventions to alleviate this infertility. After leaving the testis, nascent sperm gain their potential for functional competence as they progressively transit the epididymis, a long and convoluted tubule that connects the testes to the vas deferens. This accessory organ of the male reproductive tract is characterised by segment specific microenvironments that result from differential protein secretion by the epithelium of the tubule. Recently, it has been shown that an additional tier of regulation involving non-proteincoding RNAs (ncRNAs), such as the microRNA (miRNA) small RNAs, is also highly influential in creating the dynamic intraluminal environment of the epididymis. There is also emerging interest in the contribution that these species of epididymal small RNA (sRNA) have in transgenerational inheritance owing to their potential to be transferred to maturing spermatozoa within the lumen of the duct. Thus, in recognition of the potential importance of epididymal sRNA, the aims of this project were to investigate the profile of miRNAs differentially expressed throughout the mouse epididymis, with a particular focus on identifying novel and miRNAs generated within this organ. The results of this study revealed that mouse epididymal epithelial cells are characterised by a cohort of 218 miRNAs. Interestingly, these populations were relatively stable, with only a small portion of these molecules (15 %) undergoing the significant changes expected of candidates involved in regulating differential gene expression along the length of the tubule. A number of these miRNAs were identified as playing regulatory roles in pathways well documented to influence epididymal physiology, including 12 and 10 miRNAs mapping to androgen regulation and endocytotic pathways, respectively. An impressive 295 miRNA species were identified within the spermatozoa sourced from differing epididymal segments. In marked contrast to epithelial cells, the miRNA population harboured by epididymal spermatozoa was found to be far more variable, with pronounced changed in both the number and abundance of miRNAs in sperm being observed as these cells progress through the epididymis. Among the miRNAs enriched in caudal sperm are a cohort of 28 molecules that have been experimentally confirmed to target the genes encoding several members of the TGF^β signalling pathway, which has been documented in the modulation of the female reproductive tract prior to fertilization. Further studies revealed that epididymosomes, small exosome-like vesicles produced by the epididymal epithelium, are replete with 358 miRNAs, ~48 % of which were characterised by significant changes in accumulation between proximal and distal ends of the tract. Additionally, the first empirical evidence to suggest that epididymosomes may transfer their payload to sperm after co-incubation in vitro has been provided. Analysis of the presence of novel miRNAs (Nov-miRs) in the mouse epididymis resulted in the identification of 22 putative candidates, mapping to > 6,200 reads. Of these, five were selected for further validation and target identification, resulting in the documentation of 19 key biological processes potentially regulated by these molecules. Three of the five Nov-miRs chosen for validation were confirmed to be present in sperm via RT-qPCR. The ongoing characterisation of these Nov-miRs and the role they play in regulation of epididymal physiology will form the basis of future work in the Nixon laboratory.

Declaration

"I hereby certify that the work embodied in this thesis is the result of original research that has not been submitted for a higher degree to any other University or Institution"

Signed:

Jackson Reilly

Author Contributions

Publication Title

Next Generation Sequencing Analysis Reveals Segmental Patterns of microRNA Expression in Mouse Epididymal Epithelial Cells

Authors

Brett Nixon, Simone J. Stanger, Bettina P. Mihalas, Jackson N. Reilly, Amanda L. Anderson, Mathew D. Dun, Sonika Tyagi, Janet E. Holt, Eileen McLaughlin

Citation

Nixon, B., et al., Next Generation Sequencing Analysis Reveals Segmental Patterns of microRNA Expression in Mouse Epididymal Epithelial Cells. PLoS One, 2015. 10(8): p. e0135605.

Statement of Contribution

Conceived and designed the experiments: B.N, J.E.H and E.A.M. Performed the experiments: S.J.S, B.P.M, J.N.R, A.L.A, and M.D.D. Analyzed the data: B.N, E.A.M, J.E.H, S.J.S, B.P.M and S.T. Contributed reagents/materials/analysis tools: B.N and S.T. Wrote the paper: B.N, S.J.S, B.P.M, J.N.R, A.L.A, M.D.D, S.T, J.E.H and E.A.M.

Author	Signature	Date
Brett Nixon		5/06/17
Simone J. Stanger		05/06/17
Bettina P. Mihalas		17/05/17
Jackson N. Reilly		05/06/17
Amanda L. Anderson		17/05/17
Mathew D. Dun		17/05/17
Sonika Tyagi		16/05/17
Janet E. Holt		18/05/17
Eileen A. McLaughlin		15/07/17

Publication Title

The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation

Authors

Brett Nixon, Simone J. Stanger, Bettina P. Mihalas, Jackson N. Reilly, Amanda L. Anderson, Sonika Tyagi, Janet E. Holt, Eileen A. McLaughlin

Citation

Nixon, B., et al., The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol Reprod, 2015. 93(4): p. 91.

Statement of Contribution

Conceived and designed the experiments: B.N, J.E.H and E.A.M. Performed the experiments: S.J.S, B.P.M, J.N.R and A.L.A. Analyzed the data: B.N, E.A.M, J.E.H, S.J.S, B.P.M and S.T. Contributed reagents/materials/analysis tools: B.N and S.T. Wrote the paper: B.N, S.J.S, B.P.M, J.N.R, A.L.A, S.T, J.E.H and E.A.M.

Author	Signature	Date
Brett Nixon		5/06/17
Simone J. Stanger		05/06/17
Bettina P. Mihalas		17/05/17
Jackson N. Reilly		05/06/17
Amanda L. Anderson		17/05/17
Sonika Tyagi		16/05/17
Janet E. Holt		18/05/17
Eileen A. McLaughlin		15/07/17

Publication Title

Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome

Authors

Jackson N. Reilly, Eileen A. McLaughlin, Simone J. Stanger, Amanda L. Anderson, Kate Hutcheon, Kiralee Church, Bettina P. Mihalas, Sonika Tyagi, Janet E. Holt, Andrew L. Eamens, Brett Nixon

Citation

Reilly, J.N., et al., Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep, 2016. 6: p. 31794.

Statement of Contribution

J.N.R., S.J.S., A.L.A., K.H., K.C. and B.P.M. carried out the laboratory work and participated in data analysis and drafting of the manuscript; S.T. performed next generation sequence analyses and bioinformatics. E.A.M., J.E.H. and A.L.E. participated in the design of the study, data analysis, and drafting of the manuscript; B.N. conceived of the study, designed the study, coordinated the study and helped draft the manuscript. All authors gave final approval for publication.

Author	Signature	Date
Jackson N. Reilly		05/06/17
Eileen A. McLaughlin		15/07/17
Simone J. Stanger		05/06/17
Amanda L. Anderson		17/05/17
Kate Hutcheon		26/05/17
Kiralee Church		17/05/17
Bettina P. Mihalas		17/05/17

Sonika Tyagi	16/05/17
Janet E. Holt	18/05/17
Andrew L. Eamens	7 th June 2017
Brett Nixon	5/06/17

Abbreviations

AGO2	Argonaute 2
AGRF	Australian Genome Research Facility
BLVRA	Bilverdin Reductase A
Ces7	Carboxylesterase 7
СРМ	Counts Per Million
DCR1	DICER1
DGCR8	DiGeorge Syndrome Critical Region 8
ESCRT	Endosomal Sorting Complex
Exportin 5	Exp5
ICSI	Intracytoplasmic Sperm Injection
lncRNA	Long-non-coding RNA
MDS	Multi-Dimensional Scaling
miRNA	microRNA
ncRNA	Non-protein-coding RNA
NFW	Nuclease Free Water
NGS	Next Generation Sequencing
PACT	Protein Kinase R-activating
PAZ	Piwi/Argonaute/Zwille
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
piRNA	Piwi-Interacting RNA
pre-miRNA	Precursor miRNA
pri-miRNA	Primary miRNA

- qPCR Quantitative PCR
- RISC RNA Induced Silencing Complex
- RNAi RNA Interference
- ROS Reactive Oxygen Species
- RT-qPCR Reverse Transcription qPCR
- sRNA Small ncRNA
- sRNA WB Small RNA Workbench
- TGFβ Transforming Growth Factor Beta
- TRBPtrans-Activation Response RNA Binding Protein
- tRF Transfer RNA Fragment
- UTR Untranslated Region